
Simulating Snooping-
Based Cache Coherence 
Protocols
Vishnu Razdan (vrazdan)
Zhaodong Zheng (zhaodonz)



The Project
● Easy-to-use tool for simulating caches
● Incorporate different cache protocols (MSI, MESI, 

MOESI)
● Usable on arbitrary executable files
● Accurately measure advantages/disadvantages of 

different code
● Atomic bus
● Snooping-based cache



Simulator Components
● CacheController[Caches]
● Cache[CacheSets]
● CacheSet[CacheLines]
● AtomicBusManager handles all 

BusRequests
● Cache ->BusRequest
● Caches snoop BusRequests



Inputs
● A binary executable
● A memory access trace file 
● Cache configuration details



Outputs
● Cycles to complete
● Hits, misses, flushes, evicts
● Main memory requests, bus requests, 

cache-to-cache shares



Why?
● Uncover problems

○ False sharing
○ Cache thrashing

● Compare different code implementations for 
performance

● Compare different coherent cache protocols



Why is this hard?
● Maintaining program memory operation 

ordering is difficult
● Correctly implementing the coherence 

protocols



Results



More complex protocols cause more overhead



No false sharing allows MOESI to perform well 



For random memory access, MESI and MOESI perform 
great



For certain real applications, there is no 
negligible performance gain 



How the total execution time changes depending on 
what protocol used



Cycle Cost per protocol when there is false 
sharing



Number of cycles decrease with MESI and 
MOESI when there is no false sharing



Performance gained with MESI and MOESI protocols 
with random memory accesses



Performance gained with MESI for a 
raytracer



Thanks!


